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Abstract. Direct statistical Monte-Carlo simulation of rarefied gas molecular flow near a rough surface is studied on the
base of analytical approximation of scattering function V and of the momentum and energy exchange coefficients [1-3].

The computation time is reduced due to the expansion of the roughness operator Ŝ [2-6], which is used to express the

scattering function V on rough surface in the form V = Ŝ V0. The representation of the roughness operator is derived that
is convenient to use both in numerical DSMC methods and in analytical investigations.
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INTRODUCTION

In [1], a review has been given of the papers of different authors in which the velocities of the gas atoms
reflected from rough surface are computed using direct statistical Monte-Carlo simulation. Typical approach to this
problem is based on the simulation of geometrical shape of surface roughness. If the roughness is modelled as a
random field, then each step of Monte-Carlo computation requires the solution of the problem of statistical
description of the intersection of gas atom trajectory with random field (or with random process) [2]-[7]. Analytical
solution of this problem is obtained only in simplest cases having no practical applications.

Numerical solutions are very difficult, and computational realization of these algorithms requires much more
calculation time than usual DSMC procedures in rarefied gas flow. Even if surface roughness is considered as
nonrandom, and linear shapes like polygonal-line or conical-hole based models are considered [8], [9], computation
time increases essentially in comparison with calculations near a smooth  surface (without roughness).

Generally, three basic models of surface roughness were discussed:
– the deterministic model, assuming non-random expression of the shape;
– the statistical model, where the roughness is modelled as a homogeneous isotropic Gaussian random field;
– the fractal model that generalizes the approach of Blackmore and Zhou [10] and provides the analytical

expression for geometrical shape of the surface.
Deterministic roughness is modelled by flat elements and sine waves. Here, as well as in the case of more

involved models, such as conical holes [9], the point of intersection between the gas atom trajectory and the surface
can be found analytically. Thus standard deterministic model allows simulating the geometrical shape of the surface
in a Monte Carlo computation. However, simple non-random models cannot account for the contribution of micro-
roughness. The influence of the irregularities at smaller scale (including nano-scale) is justified by experiment and
plays an important role in aerodynamic computation. It becomes possible to compute the contribution of micro-
roughness only by using fractal or statistical models for the surface roughness.

The advantage of the statistical model is the ability to work with a more general class of rough surfaces, which
means that a more complex shape can be used. In this work, we offer a fast algorithm that allows simulation of
scattering by these surfaces. The computation time in our method is even less than that of deterministic models.



New advanced method proposed in the present paper permits simulating the scattering of gas atoms from a more

general class of rough surfaces. The expansion of the roughness operator Ŝ [2], which is used to express the

scattering function in the form V = Ŝ V0, allows to reduce computation time using direct expansion of the velocities
of scattered gas atoms. The physical and the chemical parameters of the gas and of the surface are accounted here by

the local scattering function V0, whereas the roughness operator Ŝ is fully determined by the geometrical shape of

roughness and by the trajectory of the gas atom [3]-[4]. Within the statistical model of the roughness [5], Ŝ can be
studied by means of the random-field and random-process theory. The most principal difficulty in statistical
approach is the complexity of computation of continuum integrals, which must be approximated by the integrals of
higher dimension [6]. To tackle this difficulty we apply Rice series [6], [7]. Especially important is here that the
most difficult and time-consuming step of the computation should be performed prior to the simulation of gas atom
trajectories. Such technique of the pre-computation of continuum integrals allows us to minimize computing time
and at the same time to reduce the number of the parameters. Consequently, eliminating the need for the
geometrical-shape simulation in the Monte-Carlo method, our algorithm outperforms all usual methods that apply
geometrical models to simulate the shape of the rough surface, such as polygonal-line or conical-hole based models.
Additional advantage of considered statistical approach is that real rough surfaces can be simulated in details since
applied model of a Gaussian random fields builds a wider class of surface models than other models used in
practice.

The advantage of the statistical model is the ability to work with a more general class of rough surfaces, which
means that a more complex shape can be used. In this work, we offer a fast algorithm that allows simulation of
scattering by these surfaces. The computation time in our method is even less than that of deterministic models.

Our main assumption is that the number of rough irregularities in a small area dS is large, so that the scale of
these irregularities is smaller than the aerodynamic scale of the flow. Consequently, the characteristic scale of the
roughness is smaller than the characteristic scale of the flow.

The scattering function of the rough surface can be represented in the form
V (v1, v) = Ŝ V0 (v1, v, n), (1)

where v1 and v are the velocities of incident and reflected gas atoms, n is the local normal, Ŝ is the roughness
operator, and V0(v1,v,n) is the local scattering function on a smooth area on a surface.

The physical and the chemical parameters of the gas and of the surface are accounted by the local scattering
function  V0; the roughness operator Ŝ is fully determined by the geometrical shape of roughness and by the

trajectory of the gas atom. Within the statistical model, Ŝ can be studied by means of the random-field and random-
process theory.

STATISTICAL MODEL OF ROUGH SURFACE

The most general statistical model of roughness is a homogeneous isotropic Gaussian random field z(x,y), where
the (x,y) plane of coordinate system corresponds to the plane of the average level of roughness, and z-axis is directed
along the normal vector to this plane (different from local normal to the surface n, fig.1).

Random field is characterized by the roughness parameter 1 and the normalized correlation function .
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Consider the expansion of the roughness operator Ŝ in a series:

 

1
m

m
S S





 .



FIGURE 1. Scattering of gas particles from rough surface .

Traditionally the term ˆ
mS corresponds to the contribution of gas atoms that were m times reflected from the

surface. In our approach another expansion of operator Ŝ is used, m is the number of reflections that happened
before the considered reflection. This expansion is more convenient for computation.

Let (1) be the conditional (provided the given values of , ,x yz z z ) probability of absence of level-crossings
between the random field z(x,y) and the trajectory of the gas atom:
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The contribution of the first collisions to the surface scattering function has the form
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where ( , , )x yg z z z is probability density of , ,x yz z z , M1 is normalizing factor, and 1 , 1 are spherical coordinates
of incident gas atoms velocity v1.  The function g controls the position of the point of collision and the direction of
the local normal vector n.

The computation of the conditional probability (1) requires the evaluation of an integral in a functional space
(the so-called continuum integral). Hence, (1) must be approximated by integrals of high dimension (up to 200),
and its calculation is difficult.

We develop a new method to calculate the velocity v of reflected gas atoms, based on the analytical expression
of the distribution of the reflected gas atoms for given velocity v1. The equations (1)-(3) allow us to find the
parameters of this distribution.

In practice, we only need to compute the mean values and the standard deviations of the velocity components vx,
vy, vz. Note that the mean value of vx is usually equal to zero due to the symmetry of the distribution, which leaves us
with only five parameters to estimate. In our computations, we used the ray-diffuse scattering model (which is a
generalization of diffuse-specular scattering) and the Cercignani-Lampis model. However, this condition (the
number of distribution parameters m5)  is valid for many other distributions used in practice.

To compute these parameters on rough surface we apply equations (1)-(3). Normalized mean values xv , yv , zv
are uniquely defined by the momentum exchange coefficients (or by the momentum accomodation coefficients).
However, normalized variances

xvD ,
yvD ,

zvD are not uniquely defined by the energy exchange coefficients. We



express the values of xv , yv , zv ,
xvD ,

yvD ,
zvD as continuum integrals by applying the roughness operator to

velocity components vx, vy, vz and its squares 2 2 2, ,x y zv v v and taking into account (1)-(3). Thus two types of
continuum integrals are obtained (similar continuum integrals appear in local methods [11]):
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To compute the function space integrals (1) , x
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kK we use the Rice series
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Here, Nm denotes the factorial moment of m-th order of the number of crossings of random field z(x,y) with the
trajectory of a gas atom. The values of Nm can be expressed as 2m-fold integrals of the joint probability density of
z(x,y)  and its derivatives

i (i=1,2,…m). To the best of our knowledge, Rice series were not used in aerodynamic
computations so far, the reason being the singularities in the integrals for Nm. We use a novel technique to eliminate
these singularities by rewriting the roughness-simulating random process as an integral of a Wiener process.

DIRECT SIMULATION – MONTE CARLO METHOD

Continuum integrals x
kK and y

kK depending only on the angles 1 1,  and on roughness parameter 1, but not
on the physical parameters of the flow, can be computed from (2)-(6). Hence, the values x

kK and y
kK could be

represented as the functions 1 1 1( , , )x
kK    and 1 1 1( , , )y

kK    and consequently could pre-computed in a
preliminary step as tables. This representation is important advantage of the described method, since it allows
sparing a lot of computing time.

There is no need to simulate the shape of the rough surface in the DSMC calculations because it is taken into
account by the roughness operator Ŝ . Moreover, we do not need to compute the scattering function of gas-surface
interaction anymore. Hence, the computation time at the stage of atoms scattering simulation from rough surface is
very small.

The algorithm to simulate the reflection of gas atoms from rough surface has three steps.
1. Computation of continuum integrals. This step should be performed prior to the simulation of gas atom

trajectories in the channel. However it is the most difficult and time-consuming step. The statistical
description of the surface roughness (i.e., the basic roughness parameter  and the normalized correlation
function (r) ) is the only information needed at this step. As a result of this pre-computation, we have
either tables or approximating functions of the function-space integrals x

kK and y
kK .

2. Simulation of gas-surface interaction based on the chosen analytical model for the scattering
function. This step also has to be performed prior to the simulation of the atom trajectories. It is possible to
use, for example, the diffuse-specular model (or, more generally, the ray-diffuse model), as well as the
Cercignani-Lampis-Lord scattering model. Other scattering functions can be used as well; the only
restriction in our framework is that it must have five or less parameters to describe the physical and
chemical features of the gas and the surface. The parameters should be related one-to-one to the normalized
mean values and standard deviations of vx, vy and vz. Then, we compute the parameters of the distribution
of the scattered gas atoms. Knowing the analytical scattering model for the smooth surface without

roughness, the estimated parameters can be transformed according to the integrals
x
kK and

y
kK ,

computed at the first step. From equations (1) and (3)-(5), it follows that the parameters for the rough
surface are linear combinations of the parameters on the smooth surface; the coefficients of the linear

expansion depend on
x
kK and

y
kK . As a result of this step, we obtain the parameters of the distribution

for the rough surface.



3. Computation of the velocity v of scattered gas atoms. First, we compute the parameters of the
distribution of the scattered gas atoms. From the second step, we know the analytical scattering model for
the smooth surface without roughness. The estimated parameters are transformed according to the integrals

x
kK and y

kK , computed at the first step. From equations (1) and (3)-(5), it follows that the parameters for
the rough surface are linear combinations of the parameters on the smooth surface; the coefficients of the
linear expansion depend on x

kK and y
kK . As a result of this step, we obtain the velocities of the gas atoms

that are scattered from the rough surface.
In terms of computational speed, our algorithm outperforms the methods that use geometrical models to simulate

the shape of the rough surface, such as polygonal-line or conical-hole based models. This is achieved by eliminating
the need for the geometrical-shape simulation in the Monte-Carlo method; all shape information is accounted for at
the preliminary steps.

In Figs. 2-3, we show typical graphs of the computed continuum integrals x
kK and y

kK for different values of
1 and of the incidence angle (in degrees; k = 2, 3). We observe the significant influence of roughness on the main
statistical parameters of the reflected gas atoms.

The precision is satisfactory if 1 is less than 0,5 and  does not exceed 70 (sliding angles  require
accounting second reflections [12]).

Once the five parameters of the flow are estimated, the velocity v of reflected gas atoms could be simulated
through a DSMC computation.

FIGURE 2. Typical graphs of continuum (functional space) integrals 2
xK and 2

yK for different values of 1 .

FIGURE 3. Typical graphs of continuum (functional space) integrals 3
xK and 3

yK for different values of 1 .



CONCLUSION

Efficient approach associated with the Direct Simulation – Monte Carlo (DSMC) method to studying the
influence of surface roughness on rarefied gas flow in a channel is developed. Based on statistical model of rough
surface approach indicate appreciable effect of surface roughness.

The comparison of different models of roughness shows that statistical approach requires more difficult
calculation, including the computation of continuum (functional space) integrals. For example, if we use fractal
model to calculate statistical parameters of velocity distribution of reflected atoms, we must compute the integrals of
dimension 5. Applying statistical model we calculate integrals of dimension 11 for the same precision (five terms of
Rice series). Moreover, by using statistical approach it is necessary to eliminate the singularities.

The computation of the velocity distribution and of the flux of gas in channels shows similar results for both
models. Surface roughness has more influence on aerodynamic resistance of a channel than on aerodynamic lift and
drag coefficients in external flows. The flux decreases by 20-30% for 1 = 0.5. The dependence of the flux on
surface roughness has a maximum by the length of the channel about 5—10 (relative to the width).

The comparison of statistical and deterministic models shows following results. Statistical model of a roughness
has better performance in terms of computational speed if the integrals x

kK and y
kK are pre-computed in a

preliminary step. Deterministic model of a roughness has an advantage if the surface is simulated during the
calculations.

However, using special technique of calculations, we obtain computing time economy for statistical model. The
most difficult and time-consuming step of computation of continuum integrals can be performed in preliminary step
prior to the simulation of gas atom trajectories in the channel. Following this procedure we obtain computing time
for statistical model much less than computing time for fractal model as well as for standard deterministic models.

Additional advantage of statistical approach is that Gaussian random fields build a wider class of surface models
than other models used in practice; hence, this model can simulate real rough surfaces in details.
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